Point-augmented biquadratic C1 subdivision surfaces
نویسندگان
چکیده
Shape artifacts, especially for convex input polyhedra, make Doo and Sabin’s generalization of bi-quadratic (bi-2) subdivision surfaces unattractive for general design. Rather than tuning the eigenstructure of the subdivision matrix, we improve shape by adding a point and enriching the refinement rules. Adding a guiding point can also yield a polar bi-2 subdivision algorithm. Both the augmented and the polar bi-2 subdivision are complemented by a new primal bi-2 subdivision scheme. All surfaces are C and can be combined.
منابع مشابه
Non-uniform recursive Doo-Sabin surfaces
This paper presents a generalization of Catmull-Clark-variant Doo-Sabin surfaces and non-uniform biquadratic B-spline surfaces called NURDSes (Non-Uniform Recursive Doo-Sabin Surfaces). One step of NURDS refinement can be factored into one non-uniform linear subdivision step plus one dual step. Compared to the prior non-uniform Doo-Sabin surfaces (i.e., quadratic NURSSes), NURDSes are convergen...
متن کاملConversion of Dupin Cyclide Patches into Rational Biquadratic Bézier Form
This paper uses the symmetry properties of circles and Bernstein polynomials to establish a series of interesting barycentric properties of rational biquadratic Bézier patches. A robust algorithm is presented, based on these properties, for the conversion of Dupin cyclide patches into Bézier form. A set of conversion examples illustrates the use of this algorithm.
متن کاملSmoothness of Subdivision Surfaces with Boundary
Subdivision rules formesheswith boundary are essential for practical applications of subdivision surfaces. These rules have to result in piecewise C -continuous boundary limit curves and ensure C -continuity of the surface itself. Extending the theory of Zorin (Constr Approx 16(3):359–397, 2000), we present in this paper general necessary and sufficient conditions for C -continuity of subdivisi...
متن کاملAnalyzing midpoint subdivision
Midpoint subdivision generalizes the Lane-Riesenfeld algorithm for uniform tensor product splines and can also be applied to non regular meshes. For example, midpoint subdivision of degree 2 is a specific Doo-Sabin algorithm and midpoint subdivision of degree 3 is a specific Catmull-Clark algorithm. In 2001, Zorin and Schröder were able to prove C1-continuity for midpoint subdivision surfaces a...
متن کاملFully C1-conforming subdivision elements for ,nite deformation thin-shell analysis
We have extended the subdivision shell elements of Cirak et al. [18] to the ,nite-deformation range. The assumed ,nite-deformation kinematics allows for ,nite membrane and thickness stretching, as well as for large de9ections and bending strains. The interpolation of the undeformed and deformed surfaces of the shell is accomplished through the use of subdivision surfaces. The resulting ‘subdivi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Graphical Models
دوره 77 شماره
صفحات -
تاریخ انتشار 2015